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ABSTRACT

The research is motivated by the need for economic efficiency and risk management in the

national electric system. Stochastic costs of natural gas are introduced in a generalized network

flow model of the integrated power energy system to explore the effects of uncertain fuel costs

on the optimal energy flows in U.S. The fuel costs are modeled as discretely distributed random

variables and a rolling two-stage approach is applied to solve the stochastic recourse problem.

All the data are derived from publicly available information for the year 2002. The natural gas

price forecasts by the Energy Information Administration are adapted to generate scenarios

that are considered in the stochastic problem. Compared to the expected value solution from

the deterministic model, the recourse problem solution obtained from the stochastic model has

higher total cost, lower natural gas consumption and less subregional power trade but a flow

mix which is closer to the 2002 real data. Surprisingly, increasing the uncertainty level of the

scenarios leads to a recourse problem solution with slightly lower total cost but this effect may

be distributed to the inaccuracy of the forecasts. The comparison demonstrates the stochastic

model’s capability of forecasting energy flows. The stochastic model assists decision makers to

better understand how the uncertain fuel costs would affect future flows within the national

electric energy system.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

Our life style would be unthinkable without the use of electric power. The growing uti-

lization of electric energy is a decisive prerequisite for a rapid development of industry and

agriculture. To meet the demand of electrical energy which increases by 4% to 7% per year in

industrial countries, considerable amounts of primary energy carriers such as coal, petroleum

or natural gas must be provided for power generation. Power plants together with the produc-

tion and transmission of fuels compose a network with complex structure and many uncertain

factors such as fuel price are involved in the system. As a reduction of the resources of primary

energy carriers takes place all over the world and the fuel prices increase continuously, there

has been a great concern about both technical and economic efficiency of the production of

electrical energy. Given its inherent nonlinearities and uncertainties, remarkable efforts have

been made to achieve a concise and comprehensive understanding of the large electric power

network and to find more economic and more reliable ways to assemble and operate it.

Quelhas (35) constructed a decision model to account for the interdependencies across time

and space in the U.S. bulk energy transportation system. It included subsystems for major

fossil fuels and electricity. This is a generalized minimum cost network flow model which is

constituted by coal and natural gas supply and storage, electricity generation and the energy

flows among them. As fuel inventories may be carried over from one period to another, the

model was extended to a dynamic domain with multiple periods. After validation with year

2002 data, an overall optimization was performed at the national level and the result provided

insights into ways to increase the economic efficiency of the national energy system such as

better utilization of low cost generators and increase in electric power trade. While the model
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offers related decision makers a comprehensive analysis on the national energy system, its

formulation assumes that all information is known with certainty in advance. A question is

raised by researchers: can we use this model to understand the effect of uncertainty on energy

movements?

The reason to propose this question is quite natural given the uncertainty involved in the

energy system. Multiple factors such as severe weather, equipment failures and international

political events affect fuel prices, electric supply/demand and energy transportation. Some of

the uncertain elements may cause a high cost to satisfy energy demands and some even lead to

serious consequences, for example, large-scale disruption of energy supply. In 2005, hurricanes

Katrina and Rita hit the Gulf of Mexico area. The catastrophic event not only interrupted the

local electric and coal supplies but also damaged the natural gas production and transportation

facilities, which caused significant nationwide impacts. The huge potential effects caused by

the great uncertainty associated with the energy system motivate us to include uncertainty in

the forecast elements within the model and study their effects using stochastic programming.

Stochastic programming has been applied to numerous energy models to address the prob-

lem of uncertain prices and demand. However, most of the research in the literature is limited

to regional models or a single energy resource because of the spatial complexity and the in-

terdependencies among various resources. Therefore, it would be interesting and meaningful

to research the bulk energy transportation model with stochastic programming and address

solutions to provide practical guidance for the U.S. power generation and transmission systems.

1.2 Objective

The first problem we need to research is which factors to be modeled as stochastic elements

and how to measure the uncertainty mathematically. The selection criterion would be im-

portance of the uncertain factors. For example, we might not want to investigate what would

happen if the coal transportation capacity on a certain route varies because the situation rarely

happens and has little effect on the whole system. However, if the price of natural gas from

the Gulf of Mexico fluctuates, power generation cost all over the country would be influenced
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because electricity generated from natural gas is also used to satisfy peak demand and the

Gulf of Mexico is a major supply of the fuel. Besides importance, we should also consider the

tractability of the corresponding model. If it is difficult to capture the distribution of a selected

variable, then it seems that we could not define the uncertain elements mathematically in the

model and could say nothing of a solution.

After the stochastic model is constructed, we should collect necessary data and draw so-

lutions from the model with available methodologies that are used to address stochastic pro-

gramming models. Since the solution is a prediction of energy movements, it will be compared

to the actual flows for judgment. Also, comparison between stochastic technique and deter-

ministic approach weighs whether the additional computation cost for stochastic programming

is worthwhile or not.

In summary, the objectives are to:

• Describe the important uncertain elements in a proper way and build the stochastic bulk

energy transportation model;

• Implement the model with appropriate data and solve for optimal flows;

• Judge the value of the stochastic model by comparing the solution to both actual flows

and the result from the deterministic model.

• State the lessons indicated by the stochastic model and how the model performs in

projection of energy movements.

1.3 Thesis Organization

Chapter 2 reviews the relevant literature about integrated energy systems and stochastic

programming. The formulation of the stochastic energy model is presented in Chapter 3

and a small numeric example in this chapter illustrates the modeling methodology. Chapter

4 provides a detailed description of the model structure, data collection and the complete

procedure for obtaining the solution of the optimization problem. Visualized results of both
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stochastic and deterministic models are presented and compared in Chapter 5. Concluding

remarks and directions for future work follow in Chapter 6.



www.manaraa.com

5

CHAPTER 2 LITERATURE REVIEW

2.1 The National Energy System

Due to the limited data availability and the complex interaction between subsystems, most

energy models built in the literature are narrowed into contract/utility/region level and fo-

cus on one aspect of the whole system. Petroleum product, electric power and fuel sup-

ply and transmission systems are therefore investigated separately regardless that they are

highly interconnected. However, since 1974, the Federal Energy Administration (FEA) and its

predecessor, the Energy Information Administration (EIA), have developed a series of three

computer-based, medium term energy modeling systems to analyze domestic energy-economy

markets and the relationship among electric energy and all kinds of fuels.

The Project Independence Evaluation System (22) was the first of the three systems and

was employed by the FEA prior to 1982. It was initiated in 1974 to provide a framework for the

developing a national energy policy through quantitative analysis and projections of the energy

system. PIES considered several objectives including fuel price sensitivity, fuel competition

(the possibility of the substitution of one energy source for another), technology restriction

or improvement, resource limitations, economic impact, regional variations and other external

effects on the energy system. Given the large volume of information and highly interdependent

nature, a modular system was employed to permit the integration of subsystems, expansion

of major components and the introduction of new elements. Figure 2.1 depicts the framework

of PIES where the supply, demand, and equilibrium balancing components are combined with

models of the economy, assessments of non-energy resource availability, and report writers

that evaluate energy solutions in terms of the environmental, economic or resource impacts.

PIES successfully analyzed the U.S. national energy system with an organization of engineer-
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ing, econometric, and optimization models and improved the decision-making process for the

complicated large-scale, time dependent system.

Figure 2.1 PIES Structure (22)

In 1982, PIES was updated to the Intermediate Future Forecasting System (IFFS) (29)

which was used by EIA through 1993. While keeping the major objectives the same as the

PIES, IFFS made a significant modification to the structure of model design, as shown in

Figure 2.2. PIES built sub-models according to functions such as supply, demand and other

constraints, keeping corresponding information about all the fuels in the same block. However,

with the period of comprehensive energy legislation ending in the late 1970s, energy issues

became more fuel specific, which motivated a model structured by fuels rather than functions.

A simple integrating routine coordinates across the fuels and steps from submodel to submodel

in order to capture the interaction among fuels. The new structure decomposes the model into

manageable units which adopt diverse methodologies and are developed by individual groups

with detailed knowledge of certain fuels. Compared to the PIES in which the person responsible

for the integrating methodology becomes unreasonably overburdened by the developmental

runs needed to test changes in submodels, IFFS is partitioned by fuel to avoid the complex
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task of integration and to balance the workload among the staff in charge of submodels.

Figure 2.2 IFFS calculation flow (29)

In 1993, the IFFS was replaced by the National Energy Modeling System (NEMS) (14),

which again had a new system structure. As depicted in Figure 2.3, NEMS takes advantages

from both PIES and IFFS. There are two levels of subsystems. The first level is composed

by function components of Supply, Conversion and Demand. Within the function blocks of

Supply and Conversion, submodels are built for individual fuels, while Demand is partitioned

according to end-users. Associated with advanced modeling and optimization techniques and

the latest computing machines, the NEMS combines and processes more energy information

than its predecessors and therefore is more capable with projections. In addition to the base-

line forecast Annual Energy Outlook, NEMS generates one-time analytical reports and papers
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to analyze the effects of environmental impacts, existing government regulations and alterna-

tive energy policies. The system is used to test different assumptions about energy markets,

to evaluate the potential impacts of new and advanced energy production, conversion and

consumption technologies. It has been used for special analysis at the request of the White

House, U.S. Congress, other offices of the Department of Energy who specify the scenarios and

assumptions, which means the analysis produced by NEMS has an important effect on how

the U.S. government regulates the energy markets. However, it is not open-source and not

available for researchers and utilities to plan with.

Figure 2.3 National Energy Modeling System

Quelhas developed a generalized network flow model for the U.S. electric energy system to

explore economic efficiency of the energy flows from fuel suppliers to electric load centers (36).

Within this decision model, fuel production, transportation, storage, electricity generation and

transmission are represented by nodes and arcs included in the generalized network which is a

three-level system: Coal, natural gas and electricity are partitioned into corresponding levels

and connected by energy movements among different levels. All the data in this model are

derived from various public available sources, such as the websites of the Energy Information

Administration and the Canadian National Energy Board. The model was validated by com-
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paring its output to the actual data published by EIA for 2002 (37). With the objective of cost

minimization at the national level, the model is constrained by electricity generation/demand,

fuel supply/demand and transmission capacities. It can be solved efficiently by network op-

timization codes and is expected to enable both public and private decision makers having

limited available data and other resources to better understand the complex dynamics of inter-

dependencies of primary fuels and electricity networks and carry out comprehensive analysis

of a wide range of issues related to the energy sector.

2.2 Stochastic Programming

Whereas deterministic optimization problems are formulated with known parameters, real

world problems almost invariably include some unknown parameters. Randomness in problem

data poses a serious challenge for solving many linear programming problems, through which

the solutions obtained are optimal for the specific problem but may not be optimal for the

situation that actually occurs. Stochastic programming (SP) is a framework for modeling

optimization problems that involve uncertainty. This field is currently developing rapidly

with contributions from many disciplines including operations research, mathematics, and

probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture

to financial planning and from industrial engineering to computer networks.

The fundamental idea behind stochastic programming is the concept of recourse, which

introduced by Dantzig (11) and Beale (6) independently. Recourse is the ability to take

corrective action after a random event has taken place. The most widely applied and studied

stochastic programming with recourse models are two-stage linear programs. Here the decision

maker takes some action in the first stage, after which a random event occurs, affecting the

outcome of the first-stage decision. A recourse decision can then be made in the second stage

that compensates for any bad effects that might have been experienced as a result of the

first-stage decision. The optimal policy from such a model is a single first-stage policy and a

collection of recourse decisions defining which second-stage action should be taken in response

to each random outcome. One natural generalization of the two-stage model is to extend
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it to many stages, each of which consists of a decision followed by a set of observations of

the uncertain parameters that are gradually revealed over time. Mulvey and Vladimirou (30)

specified stochastic programming to networks by dividing nodes and arcs into separate sets

corresponding to the stage to which they belong. They also develop a specific decomposition

method for solving multistage stochastic networks.

An alternative type of stochastic programming approach is so-called Chance-constrained

stochastic programming, which was first introduced by Charnes and Cooper (10). It does not

require that decisions be feasible for every outcome of the random parameters. It tries to find

a decision which ensures that a set of constraints will hold with a certain probability. An

application might be a delivery service that experiences random demands, and wishes to find

the cheapest way to deliver its packages with a high probability.

While stochastic programming is usually characterized by a probability distribution on the

parameters, robust optimization, which is a further development of chance-constrained SP,

can tackle the problems where the parameters are only known within certain bounds. The

goal is to find a solution which is feasible and acceptably close to optimal for all such data.

Research with main contributions to the foundation of Robust Optimization includes Ben-Tal

and Nemirovski (4) and Kouvelis and Yu (25). Bertsimas and Sim (5) presented a robust

optimization approach which set up a parameter to control the level of robustness against

conservatism. This method provides a solution satisfying a high proportion (which depends

on the parameter set) of the constraints even for the worst situation.

2.3 Stochastic Programming Models in Energy

Stochastic programming models are widely used in the area of optimal allocation of en-

ergy and its related resources, where demand and prices are always unpredictable (41). Those

models in power systems planning are usually divided according to the planning horizon. Long

term planning models deal with 15-20 year large investments such as building thermal units

and constructing hydro reservoirs and turbines. This kind of model helps us find the optimal

investment to meet the uncertain future demand. Regularly, several possible future load du-
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ration curves are put forward and a straightforward recourse model is developed to address

the recourse solutions for different scenarios. Murphy et al. (28) carried out a deterministic

investment analysis using a new load duration curve aggregated from predicated curves and

obtained the same solution as if the recourse problem is solved. Sherali et al. (39) (40) em-

phasized peak load pricing and discuss Murphy’s model in greater detail. Gardner and Rogers

(19) investigated a multi-stage problem where load duration curves are revealed over time and

investments are made stage by stage. While all the demand must be satisfied in traditional

monopoly-based production planning, Qiu and Girgis (33) look at the problem from a differ-

ent perspective by allowing and pricing outages, which takes into account that something even

worse than the worst scenario modeled could occur with the consequence of shortage.

Medium-term power planning has a 1-3 year horizon and usually deals with reservoir man-

agement, where the true cost and risk brought by the uncertain aspects of using the water

are underestimated by deterministic solutions and the performance of stochastic optimization

models is proved to be significant. Short term planning typically deals with problems with

horizons of one week or shorter, such as unit commitment and economic dispatch.

All of the above models were developed for regulated markets. The transition of electricity

markets from the old regulated regime to the deregulated system motivated the development

of hybrid stochastic models where there is both a demand constraint and a wholesale market,

where the producer can choose to serve the local load by his own production capacity or by

buying capacity. Some stochastic programming models serve the needs of utility planners

and policy makers in that they can generate derive scenarios for market prices of electricity.

Important papers include Fragniere and Haurie (17), Botnen et al. (8) and Hindsberger (21).

As the electricity markets are developing into regional commodity markets, the use of stan-

dardized financial contracts such as forward contracts increases. The contract price represents

the current market value of future delivery of the electricity. Hence, valuation of future pro-

duction is needed in stochastic programming models in energy. These models are based on

describing the uncertainty in the form of scenarios of the spot price of the commodity. Since

basing the scenarios on forecasts of spot prices will not give a valuation that is consistent
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with the market, the stochastic programming models are in a position to value the decision

flexibility using a price of risk that is consistent with the market.

Energy bidding is viewed as a short term optimization problem in which the market partic-

ipant offers to buy or sell capacity to the market in the form of price-quantity pairs for given

time intervals. Determining optimal bids to send to the market operator becomes a nontrivial

task that can be supported by stochastic programming models. Nowak et al. (32) study this

problem and present an integrated stochastic unit commitment and bidding model. Neame et

al. (31) and Anderson and Philpott (1) also developed stochastic models to explore optimal

energy bidding prices.

Operations scheduling in deregulated markets is divided into two categories. In the first set

of problems, generation utilities are not large enough to influence electricity prices by changing

the amount of generation capacity offered to the market. Scott and Read (38) investigated the

other class of models in which the operators do have market power on energy price. A major

limitation in these analyses is that buying and selling of contracts is in reality determined

simultaneously with production.

Financial instruments such as trading in the forward market are used to reduce risk in

energy market. However, since fixing income in the future does not automatically mean reduced

risks, researchers made great efforts on stochastic models that manage the risk of energy

trading. Mo et al. (27) and Fleten et al. (18) suggest that production scheduling and contract

risk management should be integrated in order to maximize expected profit at some acceptable

level of risk. However, other researchers claim that the benefits of a decoupled set of models

will probably outweigh the small theoretical gain from integrating production planning and

trading. All in all, the deregulated markets have not found their final forms and there are a

lot more topics we can discuss and research with the tool of stochastic programming.
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CHAPTER 3 MODEL FORMULATION AND ILLUSTRATIVE

EXAMPLE

3.1 Deterministic Model and Its Notations

The researched national electric energy system is aggregated at a regional level which is

based on the topology of the electrical grid, availability of aggregated data, and operating

constraints. It is an adequate simplification of the physical and institutional complexity of the

electric power industry given that data are generally available at this level (36). The whole

system is modeled as a generalized minimum cost flow network. The nodes represent coal mines,

natural gas wells, natural gas storage facilities and electricity transmission centers. The flows

between these nodes include fuel transmission/storage and electricity transmission/subregional

trade. The arc coefficients denote the efficiency of energy movement or the transferring rate

from fuel to electric energy. The mathematical formulation of this model is as formula 3.1 (36).

Table 3.1 shows notations used in the formula.

Min z =
∑

t∈T

∑
(i,j)∈A cij(t)eij(t)

s.t.
∑

(j,k)∈A ejk(t)−
∑

(i,j)∈A rij(t)eij(t) = bj(t) ∀j ∈ N,∀t ∈ T (3.1)

eij,min ≤ eij(t) ≤ eij,max ∀(i, j) ∈ A,∀t ∈ T

3.2 Solve Stochastic Problem via Deterministic Equivalent

Solving stochastic network flows involves both the description of uncertain elements and

the methodology chosen to deal with uncertainty, which are interdependent and could not be

fixed separately. On one hand, the mathematical assumption in the chosen method should
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Table 3.1 Notations in deterministic model

t The tth time period.
eij(t) Energy flowing from node i to node j during time t.
bj(t) Supply (if positive) or demand (if negative) at node j during time t.
eij,max Upper bound on the energy flowing from node i to node j.
eij,min Lower bound on the energy flowing from node i to node j.
cij(t) Per unit cost of the energy flowing from node i to node j during time t.
rijt Efficiency parameter associated with the arc connecting node i to node j during time t.
A Set of arcs, {(i, j)}.
N Set of nodes, {j}.
T Set of time periods, {t}.

be appropriate for the description of uncertainty in this model. On the other hand, while

stating the uncertain elements mathematically, we should also consider whether it is possible

to estimate them from data available.

As stated in chapter 1, we study only uncertain fuel cost and demand in this research

and it is reasonable to formulate them as discrete random variables taking a finite number

of realizations, which describe how the price and demand can fluctuate. The assumption of

discrete distributions for the uncertain elements is common in most stochastic programming

approaches, which enables us to solve the problem with the famous two-stage approach (30).

To simplify the explanation of two-stage approach, we suppress the notation t and only use

the ordinary term ij to differentiate variables and parameters in different periods.

We model the cost per unit flow on a fuel acquisition arc as a random variable with K

possible values:

Pr{cij = cij(1)} = pcij (1), P r{cij = cij(2)} = pcij (2), . . . , P r{cij = cij(K)} = pcij (K).

Similarly, the electricity load is modeled on a demand node as a random variable with L

possible values:

Pr{bj = bj(1)} = pbj
(1), P r{bj = bj(2)} = pbj

(2), . . . , P r{bj = bj(L)} = pbj
(L).

Assume that there are m random cost variables and n random demand variables in the

model; for the assumption of discrete distribution, we can define a scenario s ∈ S for each
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combination of values:

πs = Pr{c(ij)1 = c(ij)1(k1), . . . , c(ij)m
= c(ij)m

(km), bj1 = bj1(l1), . . . , bjn = bj1(ln)}.

We also assume all the random variables are independent. Thus,

πs = pc(ij)1
(k1) . . . pc(ij)m

(km)pbj1
(l1) . . . pbjn

(ln).

In the two-stage approach, all the arcs are divided into three sets (30). The flows on sets

of first-stage arcs are decided in the first stage, then the values of all uncertain quantities are

revealed and the flows on the second-stage arcs are set. Generally, the sets A of arcs and N of

nodes are partitioned into disjoint subsets as follows:

• A1= {arcs representing first-stage decisions for which all associated parameters are de-

terministic} ;

• A′
1= {arcs representing first-stage decisions that have associated stochastic costs, capac-

ities or multipliers} ;

• A2= {arcs corresponding to second-stage decisions} ;

• N1= {nodes with all the incoming arcs in A1 } ;

• N2 = N\N1.

We also distinguish between first-stage and second-stage flows as:

• X = {xij |(i, j) ∈ A1
⋃

A′
1};

• Y = {yij |(i, j) ∈ A2}, so that {eij} = X
⋃

Y .

Finally, for node i, denote the set ∆ of incident out-arcs and in-arcs as, respectively,

• ∆+
i ≡ {(i, j) ∈ A} and ∆−

i ≡ {j, i) ∈ A}.

Each scenario subproblem is a generalized network with the fixed topology of the given one

realization of the uncertain costs and demands. The subproblem for scenario s ∈ S is stated
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as formula 3.2, in which xij(s) is the flow on a first stage arc in scenario s and yij(s) is the

flow on a second stage arc.

Min fs(x(s), y(s)) =
∑

(i,j)∈A1

cijxij(s) +
∑

(i,j)∈A′
1

cij(s)xij(s) +
∑

(i,j)∈A2

cij(s)yij(s)

Subject to
∑

(i,j)∈∆+
i

xij(s)−
∑

(j,i)∈∆−
i

rjixji(s) = bi ∀i ∈ N

∑
(i,j)∈{∆+

i

⋂
A1}

xij(s)−
∑

(j,i)∈{∆−
i

⋂
A1}

rjixji(s) +
∑

(i,j)∈{∆+
i

⋂
A′

1}

xij(s)−
∑

(j,i)∈{∆−
i

⋂
A′

1}

rjixji(s)

+
∑

(i,j)∈{∆+
i

⋂
A2}

yij(s)−
∑

(j,i)∈{∆−
i

⋂
A2}

rjiyji(s) = bi(s) ∀i ∈ N2 (3.2)

lxij ≤ xij(s) ≤ ux
ij ∀(i, j) ∈ {A1

⋃
A′

1}

lyij ≤ yij(s) ≤ uy
ij ∀(i, j) ∈ A2

If we know which scenario would occur, we could solve just one subproblem. However,

to jointly consider all the possibilities in the solution procedure, the values of the first-stage

decisions are assumed to be invariant and thus we have x(s) = x(s′) = z ∀s, s′ ∈ S; s 6=

s′.Therefore, the overall program could be stated as the deterministic equivalent problem in

formula 3.3, where X is substituted with Z and πs is the probability of scenario s.

Min
∑
s∈S

πsfs(z, y(s)) =
∑

(i,j)∈A1

cijzij +
∑
s∈S

πs[
∑

(i,j)∈A′
1

cij(s)zij +
∑

(i,j)∈A2

cij(s)yij(s)]

Subject to
∑

(i,j∈∆+
i )

zij −
∑

(j,i)∈∆−
i

rjizji = bi ∀i ∈ N

∑
(i,j)∈{∆+

i

⋂
A1}

zij −
∑

(j,i)∈{∆−
i

⋂
A1}

rjizji +
∑

(i,j)∈{∆+
i

⋂
A′

1}

zij −
∑

(j,i)∈{∆−
i

⋂
A′

1}

rjizji (3.3)

+
∑

(i,j)∈{∆+
i

⋂
A2}

yij(s)−
∑

(j,i)∈{∆−
i

⋂
A2}

rjiyji(s) = bi(s) ∀i ∈ N2,∀s ∈ S

lzij ≤ zij ≤ uz
ij ∀(i, j) ∈ {A1

⋃
A′

1}

lyij ≤ yij(s) ≤ uy
ij ∀(i, j) ∈ A2,∀s ∈ S
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Say |Z| = n1 and |y(s)| = n2. There are m1 constraints not related to the second stage

arcs Y and m2 constraints related to Y . The total number of different scenarios is |S|. Hence,

the size of this deterministic equivalent formulation is n1 + |S|n2 variables and m1 + |S|m2

constraints. Solving 3.3, we get a feasible solution (z, y(s)) for each scenario s. The signifi-

cance is that no matter which scenario would be realized, the flows on the arcs in set Z are

deterministic and not affected by uncertain factors. Moreover, because the objective is the

expected value of objective functions for each scenario, all the scenarios are considered jointly.

Although fs(z, y(s)) may not be as low as the optimal objective functions for each single sce-

nario, it is relatively good for most of the scenarios, especially when it is uncertain which one

will eventually become truth.

3.3 Numeric Example and Solutions

We apply the two-stage approach to a single period integrated energy system with 2 coal

suppliers, 2 natural gas suppliers, 5 generation plants and 2 transmission centers (34). The

network is shown in Figure 3.1, in which A1 = {x2, x3, x4, x5, x6, x7}, A′
1 = {v2, v3, v4}, A2 =

{x1, x8, v1, v5, exp, imp}, N1 = {Coal1, Coal2, 2, 3, 4}, N2 = {NG1, NG2, 1, 5, North, South}.

With this case, we also explain and compare different sets of solutions.

Table 3.2 Scenarios of single-period numeric example

Scenario NG Price ($ / mcf) Northern Demand (MWh) Probability
(d-, p-) 2 25000 0.4*0.6833=0.2733
(d+, p-) 2 37000 0.4*0.3167=0.1267
(d-, p+) 3 25000 0.6*0.6833=0.4100
(d+, p+) 3 37000 0.6*0.3167=0.1900

(d, p) 2.6 28800 —-

The southern NG cost (associated with arc (NG2, 5) ) and northern demand are stochastic

with the four possible scenarios shown in Table 3.2. It is assumed that the uncertain cost and

demand are independent. Because a coal contract lasts for a long time and natural gas contract

tends to be much shorter as a result of floating prices, coal arcs are put in the first-stage set

while natural gas and transmission flows are decided in the second stage. Solve the recourse
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Figure 3.1 Numeric example: single-period electric energy system

problem by the deterministic equivalent 3.3 and the solution is called the Recourse Problem

solution (RP), illustrated in Figure 3.2. Figure 3.3 shows the optimal flows Z on the first

stage arcs and values of the recourse flows for every scenario on the second-stage arcs. As we

can find in Figure 3.3, when demand is low in the North, RP uses more southern natural gas

when the price is at its lower level, otherwise more northern natural gas is consumed. And

Nouth exports only when its demand is low and South NG price is high.

Figure 3.2 Recourse Problem Solution

We have so far embarked on formulating and solving stochastic programming models with-
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Figure 3.3 RP solution of the single-period numeric example

out much concern about whether or not it is worthwhile to do so. Hence two special terms

are introduced to analyze how the decisions are affected by including uncertainty and using

stochastic programming (24).

First we compare the optimal objective value of the stochastic model to the wait-and-see

solution (WS) which is calculated by finding the expected value of the optimal solutions for

each scenario and illustrated in figure 3.4. In the WS solution, the decision maker knows which

scenario will occur before making the first-stage decisions. In a cost-minimization problem,

WS ≤ RP and the difference between them is called the expected value of perfect infor-

mation (EVPI), since it shows how much one could expect to gain if one were told what

would happen before making decisions. Another interpretation is that the difference is what

one would be willing to pay for that information. A large EVPI shows that randomness plays

an important role in the problem, but it does not necessarily show that a deterministic model

cannot function well. However, a small EVPI means that randomness plays a minor role in

the model (24). Figure 3.5 shows wait-and-see solutions. Note that some first-stage flows are

invariant over all scenarios, but others such as those for (Coal2, 3) and (3, South) depend on

the uncertain price and demand. In this example, we have RP =1256824; WS =1249200;
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EVPI = RP − WS = 7624 which is 0.6% of the WS objective function.

Figure 3.4 Wait-and-See solution

Figure 3.5 Wait-and-See solution of the single-period numeric example

The other term concerned is called the value of the stochastic solution (VSS) which is the

difference of RP and EEV (expected value of the expected value solution). A common approach

to decision-making in an uncertain environment is to solve a deterministic problem using the

expected value of each random variable. EEV is the optimal cost in the stochastic problem with

the first-stage variables fixed at the values obtained from solving the deterministic problem

when substituting expected values for the random variables. The second stage variables for

each scenario describe the optimal recourse in that scenario given the fixed first-stage values.

Because the expected value solution (EV) is feasible for the stochastic problem, EEV > RP .
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The value of the stochastic solution is what one would pay for the additional solution effort to

solve the recourse problem. And in this example we get RP =1256824; EEV = 1257079;

VSS = EEV − RP = 255. Figure 3.6 shows the expected value solution.

Averaged flows in EV, RP and WS are compared in figure 3.7. Overall, RP is closer to WS

than EV and has a lower total cost. EV differs from RP most in decreased use of southern

natural gas, which also leads to a difference in greater use of NG from NG1. In some scenarios,

RP uses the southern natural gas because when the price is as low as $2, it is cheaper to use

natural gas than the coal from Coal2. However, when EV decides the first-stage variables, it

takes the expected price of $2.6 which is higher than coal and ignores the possibility that the

southern NG price is lower. Hence, EV solution uses as much coal as possible. Apparently,

RP is better because it keeps features of each scenario, while EV loses them in the cause of

averaging.

Figure 3.6 EV solution
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Figure 3.7 EV vs. RP vs. WS
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CHAPTER 4 IMPLEMENTATION

4.1 Model Validation

In the model of the US national electric energy system, 11 coal supply nodes and 14 natural

gas supply nodes are aggregated at a regional level regardless of real mine or well locations.

The 17 nodes of electric transmission centers represent the NERC demand regions among

which electricity is traded and transferred. For each demand region, energy generation plants

are aggregated to one node if they use the same fuel type and prime mover. There are 6

different types of plants and totally 102 generation nodes in the system. Flows between the

nodes represent the transportation of fuel and electric energy. The whole system is modeled

as a generalized minimum cost flow network. With year 2002 data, monthly natural gas and

electricity nodes and yearly coal nodes, there are totally 1290 nodes, 3480 arcs in this model.

Demand, capacities and flows represent monthly (natural gas and electricity) or yearly (coal)

totals. (35)

Quelhas (37) verified the model formulated in chapter 3 by comparing results from the

model to actual data. As shown in Table 4.1, the first column is actual coal and NG deliveries

in year 2002 and the other two columns are total flows calculated from the model. In case

A, optimized coal and NG flows are solved by fixing generation and demand according to

the actual data at each electricity transmission center, while Case B is solved only with fixed

demand of electric power. The small difference between Case A and the actual data validates

the model in the terms of the values of arc efficiencies and capacities. Comparing Case A

to Case B, greater economic efficiency would be achieved if more coal is bought and more

electricity is traded between sub regions.
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Table 4.1 Total flows comparison: 2002 actual data and the model

Result Actual Case A Case B
Coal deliveries (million tons) 976 953 1,054
Natural gas deliveries (million mcf) 5,398 5,125 3,615
Electricity net trade (thousand GWh) N/A 205 306

4.2 Rolling Two-stage Procedure

The solution in Case B is optimal for the whole system given that all data on costs,

capacities, supplies, demands and efficiencies are known with certainty beforehand. However,

it is impossible to achieve this good solution in reality because in January 2002, decision

makers did not know what the exact price of natural gas would be in October 2002, for

instance. Instead, they had to base their decisions on forecasts of future costs. As discussed

in chapter 3, the stochastic problem with uncertain fuel cost can be solved by a two-stage

approach. However, there is a problem blocking us from simply applying the method to this

case. The two-stage approach only works when we have no more than 2 periods because it

is required that all uncertain elements are revealed at the beginning of the second stage. In

our 2002 model, we have 12 periods (months) and the natural gas price for March would not

be revealed at the beginning of February. To address this problem, we applied the two-stage

approach repeatedly in a rolling procedure.

Figure 4.1 Rolling two-stage approach: the first period

This rolling procedure is illustrated by Figures 4.1 to 4.5 for a 4-period problem. We

assume a single coal purchase is made in period 1 but natural gas is purchased each period.
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Figure 4.2 Rolling two-stage approach: the second period

All demands are assumed known. At the very beginning, period 1 is the first stage, and all

the remaining periods are the second stage. One set of fuel cost forecasts is used to generate

scenarios. After the problem has been solved with the 2-stage approach, we keep the first stage

decisions. After one time step, we remove the period 1 decision variables and roll to period 2.

This time, period 2 becomes the first stage, and period 3 and 4 are the second stage. With

new information coming in, the fuel cost forecast can be adjusted. A new set of forecasts is

used to generate scenarios. Then flows on period 2 are decided and we roll to the next period,

adopting the updated price forecast. When it rolls to the last period, there is no uncertain

cost anymore, so we just solve this small size deterministic problem. This procedure allows

a simulation of the actual decision process in time steps as the decision-maker applies the

two-stage approach repeatedly with updated information about uncertain elements.

Figure 4.3 Rolling two-stage approach: the third period
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Figure 4.4 Rolling two-stage approach: the forth period

Figure 4.5 Rolling two-stage approach: the end

4.3 Price Forecast

To simulate the rolling procedure, we still need to generate scenarios with predicted fuel

costs. The long term fuel cost graph in Figure 4.6 is from EIA Annual Energy Review. The

coal price is quite flat so it is treated as fixed. Natural gas price is much more variable and

therefore modeled as an uncertain cost in the stochastic model.

EIA provides a monthly updated Short Term Energy Outlook, which “industry participants

and energy analysts regularly adopt as a ’best estimate’ of future energy outcomes” (7). We

use the 2002 data to generate scenarios. Figure 4.7 (15) was released in January 2002 with

estimated NG prices for the whole year. Figure 4.8 (16), released in January 2003, has actual

2002 NG prices. The price estimate is in the rectangle in the first graph but the actual price

in the second graph is out of the rectangle which indicates inaccuracy in price forecast. So

even though the outlook from EIA is one of the most convincing data sets based on which

utilities and others conducted resource planning and modeling studies, there still exists much
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Figure 4.6 Long term fossil fuel cost trends

inaccuracy and uncertainty.

Figure 4.7 EIA short-term natural gas price outlook, Jan. 2002

Based on the EIA data, uncertain NG cost is modeled as a discrete random variable. There

are 3 possible values for each period. The mean is set to equal the “base case” represented

by the solid line. The low value is the lower confidence limit shown in Figure 4.7 and the

high value is the upper confidence limit. Both extreme values have the same probability

p{ct = LCL = x̂t} = p{ct = UCL = x̂t} = pt, so that p{ct = x̂t} = 1 − 2pt. The variance of

the random variable V ar(ct) = 2pt(CIWt)2 depends on both p and the width of the confidence
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Figure 4.8 EIA short-term natural gas price outlook, Jan. 2003

interval. It is reasonable to set a larger value of p for more remote periods because we are

more uncertain about the forecast. Case 1 is the base case we will investigate in next chapter.

The “narrow” confidence interval is as wide as shown in the figure. In case 2, both p and CI

are enlarged to study the effect of increasing uncertainty. The variance of the cost distribution

in case 2 is 8 times that in case 1.

• Case 1: p2=0.05, p3=0.125, p4=0.2, narrow CIW;

• Case 2: p2=0.1, p3=0.25, p4=0.4, wide CIW = 2*narrow CIW.

Note that, whereas EIA predicts national average NG price, we use regional prices in the

model. Given the fact that regional prices are generated by multiplying the national price by

the regional factors (35), it is assumed that predictions of the regional prices have the same

trend and are calculated by multiplying national price estimate by the factors. Since NG

imports from Canada play a very important role in the U.S. national NG consumption, it is

necessary to take those NG prices as uncertain elements, too. To generate the forecast for the

price of natural gas imported from Canada, we first find the average gap between the actual

NG prices in Canada and in U.S.A and then add the difference to the U.S. national NG price

forecast.
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4.4 Aggregation

The problem with the two-stage deterministic equivalent is that it enlarges the problem

size. As mentioned in chapter 3, the deterministic model has 1290 nodes and 3480 arcs. Being

consistent with the assumption that natural gas price has 3 possible values in each month from

February to December, the biggest problem in the rolling procedure has 223+(97×11)×311 =

189, 016, 072 nodes and 521+(29×11)×311 = 524, 178, 494 arcs, which is absolutely non-trivial

to solve on a regular PC without any decomposition.

To reduce the problem size, we aggregated the monthly model into monthly-quarterly

(first three months and the rest three quarters) and quarterly models by adding up capacities

and demands and averaging fuel costs and compared the flows in deterministic problem, as

shown in Table 4.2. Since the maximum difference of flows between the monthly model and

the quarterly model is only 3%, it is reasonable to aggregate the model into quarter level to

achieve computational tractability. After aggregation, the problem size is reduced by several

orders of magnitude. The largest deterministic equivalent has 157 + 296 × 33 = 8149 nodes

and 521 + 807 × 33 = 22310 arcs, which could be solved by a 4G memory PC in less than 1

second.

Table 4.2 Total flows comparison: monthly, month-quarterly and quarterly

Result M MQ Q (MQ-M)/M (Q-M)/M
Coal deliveries (million tons) 1,053 1,057 1,058 0.386% 0.497%
Natural gas deliveries (million Mcf) 3,615 3,560 3,608 -1.522% -0.198%
Electricity generation from coal (million GWh) 2,117 2,121 2,121 0.197% 0.231%
Electricity generation from NG (million GWh) 414 410 409 -0.997% -1.232%
Net trade (million GWh) 381 383 371 0.533% -2.698%
Total costs (billion $ ) 96.896 96.850 97.102 -0.048% 0.212%

4.5 NG Consumptions Other Than Electricity

In the optimal solution of the deterministic model, more than 60 million dollars of the

approximately $ 100 million total cost is spent on the NG consumptions other than electricity,

which significantly affects the decisions on electric flows. However, we can not simply disregard
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this part of NG consumptions because flows used to meet those demands as well as the gas

for electricity generation are constrained by total supply and pipeline capacity. Originally, the

demands for other NG consumptions were assigned to the NG transmission nodes. To optimize

the cost of meeting electric demand only while preserving these constraints, we modified the NG

subsystem. One way to modify the network is to add a new set of nodes with those demands

to the original problem where the arcs connecting the new nodes to the NG supply nodes

are associated with zero cost. In this way, we eliminate the huge cost brought by other NG

consumptions and keep their capacity impacts. The modification to the network is illustrated

in Figure 4.9. If C4 = C1, then the new graph is the same as the old one. If C4 = 0, then the

cost for other NG consumptions is removed.

Figure 4.9 Addition node for NG consumptions other than electricity

Since the network is complex, it is non-trivial to modify it as illustrated in Figure 4.8.

For example, the two types of natural gas flows should be combined with respect to capacity

but separated according to costs. So we solve a relaxed network problem which has the same

structure as the original network and check whether the optimal solution is feasible for the

modified one, which indicates it is also the optimal solution for the modified network. The

idea is shown is Figure 4.10. When the optimal solution to the relaxed problem is feasible for

the modified network, the strategy avoids modification of the network and saves considerable

time. However, if it is not feasible, we still have to modify the network and solve the modified

problem. Here we are lucky that the solution obtained in the quarterly aggregation is actually
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feasible. However, for the monthly model without the aggregation, it is not. For further

investigation, the modification will be implemented in the future.

Figure 4.10 Solving the problem by relaxation
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CHAPTER 5 RESULTS

5.1 Stochastic Model vs. Deterministic Model

The model formulated in chapter 3 and implemented as described in chapter 4 is solved

by three different approaches which lead to three sets of solutions. The Wait and See (WS)

solution is obtained from solving a deterministic problem with the actual fuel price. The

expected value (EV) solution is also from a deterministic problem but solved by replacing

the actual price with the mean value of its forecast. The Recourse Problem (RP) solution is

obtained by solving the stochastic problem through the rolling 2-stage procedure.

We first compare the total flows in each solution in Table 5.1. The total cost refers to

actual cost for each solution but not necessarily the objective function value of that solution.

For consistency, the EV and RP solutions are evaluated using the actual (WS) costs. When

uncertainty is considered in the RP solution, coal deliveries decrease and NG deliveries increase;

especially, imports from Canada are more than doubled compared to EV. As a result, electricity

generated from coal-fired plants is reduced and more electricity is generated from natural gas.

In the stochastic case, net trade within sub regions decreases by 11%. One reason to explain

the reduction of trade is that when people are not sure of future price which determines how

much benefits can be earned from trading, they tend to avoid it and save the transportation

cost.

Compared to RP, the EV solution is closer to the WS, the optimal solution with perfect

information. However, RP is closer to the 2002 actual data than both EV and WS, as shown

in Table 5.2. We can not compare the total costs because actual flows are not available at

this level of detail. The comparison indicates that while EV and WS rely more on coal, RP

has a similar trend as the actual data to use more natural gas. This interesting result comes
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Table 5.1 Total flows comparison

Result WS EV RP (RP-EV)/EV
Coal deliveries (million tons) 1,072 1,071 1,018 -5.01%
Canada Natural gas deliveries (million Mcf) 119 210 467 122.76%
Domestic Natural gas deliveries (million Mcf) 3,719 3,651 4,544 24.45%
Total Natural gas deliveries (million Mcf) 3,839 3,861 5,011 29.79%
Electricity generation from coal (thousand GWh) 2,121 2,121 1,997 -5.81%
Electricity generation from NG (thousand GWh) 410 410 533 29.88%
Net trade (thousand GWh) 350 346 309 -10.88%
Total costs (billion $ ) 35,694 35,996 38,405 6.69%

from the greater realism of the stochastic model: we modeled the uncertain factors that people

making decisions faced in reality. And therefore, the stochastic model can be utilized as a tool

to investigate and predict how the whole system would react in the real world.

Table 5.2 EV and RP compared to 2002 actual data

Result Actual EV RP
Coal deliveries (million tons) 976 1,071 1,018
Natural gas deliveries (million Mcf) 5,398 3,861 5,011

Besides total flows, it is also beneficial to look at sub regional flows. Figure 5.1, natural

gas flows from supply areas to power plants, shows that EV and RP make different decisions

on how much to buy at each natural gas supply area. The randomization of natural gas cost

not only changes the total flows but also has an inevitable impact on the amount of natural

gas purchased from each supply area.

Natural gas storage levels in EV and RP are compared in figure 5.2 with the dashed line

showing forecasted price trend. When the uncertain factor is introduced, the system stores

more natural gas as for future uncertainty. And the storage level in RP is more consistent with

the price outlook than that in EV. Figure 5.3 shows net trade amount at each electricity trans-

mission center. At most places, exports or imports decline because of future price uncertainty,

which corresponds to the decrease of total power trade in the total flows comparison.
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Figure 5.1 Natural gas flows from supply areas: EV vs. RP

5.2 Increased Uncertainty

As shown in the previous chapter, the actual price of natural gas does not always lie in the

predicted confidence interval. The inaccuracy of prediction inspired us to study the impact of

degree of the uncertainty. We increase the variance of random variables by changing both the

CI width and the scenario distribution. Case 1 is the benchmark case used in previous analysis

and case 2, 3 and 4 are similar cases but with larger variances. Solutions are compared in

table 5.3.

• RP1: case 1 result, where p2 = 0.05, p3 = 0.125, p4 = 0.2, narrow CI, variance = V ar(1);

• RP2: case 2 result, where p2 = 0.1, p3 = 0.25, p4 = 0.4, wide CI, V ar(2) = 8 ∗ V ar(1);

• RP3: case 3 result, where p2 = 0.05, p3 = 0.125, p4 = 0.2, wide CI, V ar(3) = 4 ∗ V ar(1);

• RP4: case 4 result, where p2 = 0.1, p3 = 0.25, p4 = 0.4, narrow CI, V ar(4) = 2 ∗ V ar(1).

The comparison result is unusual. When we raise the uncertainty level by placing more

weight on extreme values, we get a solution with lower cost, which contradicts the intuitive
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Figure 5.2 Natural gas storage level: EV vs. RP

Table 5.3 Total flows comparison: WS vs. Case 1-4

Result WS RP1 RP2 RP3 RP4
Coal deliveries (tons) 1,072 1,018 1,017 1,016 1,016
Canada Natural gas deliveries (Mcf) 119 467 212 467 418
Domestic Natural gas deliveries (Mcf) 3,719 4,544 4,829 4,563 4,606
Electricity generation from coal (GWh) 2,121 1,997 1,994 1,995 1,994
Electricity generation from NG (GWh) 410 533 535 535 536
Net trade (GWh) 350 309 307 311 306
Total costs (billion $ ) 35,694 38,405 38,318 38,438 38,395

expectation that we need to pay more for the increased uncertainty. Increasing the width of the

intervals without changing probabilities has a mixed effect. Similarly for natural gas storage

(Figure 5.4), less fuel is stored in Case 2 when variance of fuel price is much larger than that

in Case 1. Although the result is not intuitive, it presents the relationship between accuracy

of forecast and degree of uncertainty. In the 2002 data the actual price is almost totally out

of the confidence interval estimated by EIA, which implies 2002 is a year when natural gas

price rose much higher than people had expected. The forecast intervals of Case 2 and Case 3

contain the actual prices but those of Case 1 and Case 4 do not. In this situation, increasing

uncertainty actually helps to adjust the forecast when it is not accurate enough. With a more
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Figure 5.3 Electric energy exports at transmission centers: EV vs. RP

accurate perception of uncertainty, the decision maker chooses decisions in early periods that

require less expensive adjustment in later periods.

Figure 5.4 Natural gas storage levels: WS vs. RP1 vs. RP2

5.3 Summary

To conclude, since the stochastic case includes some underlying uncertain factors, the

generation mix under stochastic costs is more like the actual situation than the deterministic
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case. Thus, the stochastic network flow model can be adopted to estimate the actual situation

that happens in reality and help navigate all parts involved in the system. In a more detailed

sense, while coal flows are stable with uncertain NG costs, decisions on natural gas flows vary

a lot. Imports from Canada are especially sensitive to cost uncertainty. Besides, more natural

gas is stored when uncertain costs are accounted for. There is less electricity trade between

sub regions. Last but not least, an inaccurate forecast has a negative impact on total costs

and proper control of the degree of uncertainty would offset some of its negative effect.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

To explore and forecast the U.S. electric energy system under uncertain, stochastic fuel costs

are included in a model of the bulk energy transportation system (35), which is composed of

coal, natural gas and electricity subsystems and validated with year 2002 data. As the uncertain

elements are modeled as discretely distributed random variables, we use a two-stage recourse

approach to solve the stochastic problem. A small electric network example illustrates the

two-stage method and the difference between the flows in the stochastic model and those in

the deterministic model.

In the implementation, the two-stage approach is applied in a rolling procedure to solve

the multi-period network, in which the fuel costs are revealed period by period. The scenarios

of the natural gas costs are derived from the natural gas Short Term Energy Outlook 2002 by

EIA. The natural gas consumptions other than power generation are separated by transferring

the demands to a new set of nodes so as to avoid excessive effects by NG uses outside the

power system.

Compared to the recourse problem solution, the expected value solution which is obtained

from the deterministic model with expected future fuel costs is closer to the optimal solution

with perfect information. However, the recourse problem solution, which includes more natural

gas consumption, less sub-regional trade and higher natural gas storage levels, is more like what

actually happened in year 2002, which demonstrates the model’s ability to project energy flows.

With increased uncertainty, represented by the variance of the fuel cost forecast, the stochastic

model generates a solution with lower costs than in the base case (case 1), which implies the

interdependency among the accuracy of forecasts, degree of uncertainty and the value of the
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solution from the stochastic model.

The specific contribution of this research can be summarized as follows:

• Incorporated random fuel costs into the integrated electric energy system and solved the

stochastic model via a rolling two-stage approach with 2002 data;

• Identified the stochastic model’s capability of forecasting behavior by comparing it to

the deterministic model and to the data from real world;

• Proposed the idea of using the stochastic model to project energy flows and provide

instruction for real world decision makers.

6.2 Future Work

6.2.1 Load decomposition

One of the largest differences between the deterministic model and the stochastic one is that

the latter consumes more natural gas for power generation. Later we found that the structural

model may overemphasize coal by aggregating electricity demands over months and ignoring

the daily/hourly variation. Because some of the electricity generated from NG-fired generation

plants is usually used to satisfy the peak demand, the model might reduce the need for using

natural gas in peaking units. It is worthwhile to consider disaggregating the structural model

with respect to time to see the effect. Load decomposition is one of the possible approaches.

The monthly electric load can be decomposed into 2 or more levels, one representing the peak

hours and the other one for ordinary hours. Through load decomposition, we would make

sure whether the difference in NG consumption levels is caused by including the uncertain fuel

costs.

6.2.2 Monthly model

As indicated in Chapter 4, the stochastic model is aggregated from monthly model to

quarterly because of computational restrictions. The great number of scenarios enlarges the
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problem size and makes it difficult to be solved on a regular PC, but we can find various

effective methodologies in the literature to handle large-scale linear problems.

Benders decomposition (3) and other approaches derived from it are one series of schemes

that decompose large size problem into small subproblems. When Benders decomposition is

applied to two-stage stochastic linear problems, the first stage is formulated as the master

problem providing lower bounds, and a subproblem is formed for each scenario and all the

subproblems together generate upper bounds and cuts for the master problem. The lower

bound and upper bound finally converge at the optimal solution. Benders decomposition

keeps both the master and sub problems solvable and maintains the problem size comparable

to that of the deterministic problem.

The drawback of decomposition is that it is time consuming to solve all the sub problems

iteration by iteration given the large number of scenarios. Hence, sampling techniques are

employed to reduce the number of sub problems. Lavenberg and Welch (26) discuss the

efficiency of control variables in Monte Carlo sampling. Dantzig and Glynn (13) and Infanger

(23) used importance sampling which is an improvement of Monte Carlo sampling.

In addition to decomposition and sampling, recent research on scenario reduction by Du-

pacova et al (12) also addresses the large-scale problem. The scenario reduction algorithm,

which selects most significant scenarios with respect to perturbations of their probabilities

measured in terms of a Fortet-Mourier probability metric, guarantees the degree of optimality

corresponding to the number of scenarios selected. Besides this general approach, there are

some heuristic for certain type of problems. Carino et al. (9) choose scenarios according to

desired mean and standard deviation. Beltratti et al. (2) separate the scenario tree into ex-

treme scenarios and the most likely ones and certain fraction of scenarios from each cluster are

retained to represent the stochastic situation.

In summary, a monthly model can be solved with extra computational efforts. And the

result from the disaggregated model would provide a more accurate projection of energy flows.
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6.2.3 2005 data with Katrina

We have been using year 2002 data in the stochastic model. An apparent feature of this year

is that the actual natural gas prices went much beyond the predicted figures. Analysis based

on 2002 data could help people prepare for the unexpected rise or drop of fuel price. Similarly,

study on data from alternative years would provide insights in other uncertain aspects of the

energy system. In this sense, 2005 is a special year worthy of note because the unanticipated

hurricanes struck the Gulf of Mexico and brought severe impacts on both local and national

energy system (20). The record shows that when the natural gas production and transmission

was interrupted during the catastrophic event, coal storage became a crucial source to maintain

the energy supply. Therefore, a stochastic model based on 2005 data would explore the energy

system in terms of sudden disruption of production and transmission and the proper fuel

storage level in order to avoid huge cost brought by unforeseen events.

6.2.4 Emission constraints

While the European Union has imposed CO2 emission regulations on power generation, the

U.S. government also considers reduction of greenhouse gas emissions, but currently regulates

SO2 emission to prevent acid rain. While EIA uses the National Energy Modeling System

to analyze the effects of existing and proposed government regulations, we can add emission

restrictions to the stochastic model. Since the actually policy has not been decided yet, various

sets of constraints, which stand for possible regulations regarding carbon emission, can be

evaluated simultaneously through stochastic programming.
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